Research

A unifying theme of Duke's Department of Electrical and Computer Engineering (ECE) is its interdisciplinary nature, characterized by significant funded research programs that actively engage Duke faculty from across Pratt, the applied sciences and medicine. The interdisciplinary nature of Duke ECE is well aligned with the increasing international trend toward a breakdown of traditional disciplinary boundaries; such an interdisciplinary focus has also been widely encouraged by industry and government. Our department has four primary research areas.

Signal and Information Processing

A particular strength is in the area of signal and information processing (SIP), embodied by successful collaborations between ECE, statistics and applied mathematics. Duke has long been a leader in SIP research with defense applications, and there has also been a significant expansion into biomedical applications, in collaboration with the Duke University Medical Center.

Computer Engineering

Computer engineering plays a critical role in enhancing the computing power of modern systems, impacting all areas of engineering, science and commerce. Duke ECE has played a leading role in developing new classes of computing architectures and systems, particularly with a highly successful core of young faculty. The computer engineering group in ECE has led development of significantly enhanced collaboration between ECE and computer science at Duke.

Information Physics

Duke ECE is also the home of international leaders in information physics research, embodied in pathbreaking programs in metamaterials, quantum devices, and optical systems. This interdisciplinary research involves the design, fabrication and testing of revolutionary new devices, based on novel physical concepts, with a foundation in rigorous computational modeling in electromagnetics and quantum mechanics.

Microelectronics, Photonics, and Nanotechnology

The fourth research area, microelectronics, photonics and nanotechnology (MPN), is highly vertically integrated, ranging from innovative materials, devices, and interconnects, through chip scale integrated systems. MPN research includes revolutionary microfluidic systems, nanoelectronics, optoelectronics, integrated optics, sensors, integrated multifunctional systems, energy conversion devices, and quantum sensors. The MPN research is highly interdisciplinary, and focused on design, fabrication through Duke’s Shared Materials Instrumentation Facility (SMIF) cleanroom and characterization facility, and device and system test.

September 02, 2014
Kris Hauser, an expert in computer science, informatics and robotics, joined both the electrical and computer engineering department and the mechanical engineering and materials science department in Duke University’s Pratt School of Engineering on August 3, 2014. He will join a steadily expanding...
August 12, 2014
Metamaterials expert Willie Padilla joined the electrical and computer engineering department of Duke University’s Pratt School of Engineering on July 1, 2014. Adding to one of the nation’s largest corps of faculty working with metamaterials, Padilla focuses on developing techniques and devices...
May 22, 2014
Most schools across the United States provide simple vision tests to their students—not to prescribe glasses, but to identify potential problems and recommend a trip to the optometrist. Researchers are now on the cusp of providing the same kind of service for autism.
April 29, 2014
The MicroCT scanner at Duke University is available for use by anyone, whether it be a Duke researcher, a scientists from another university or someone from the private sector. The machine uses x-rays to create 3D models of objects and even lets researchers look through their interiors slice-by-...
April 24, 2014
Innovative research like that being carried out at Duke is essential to the future of energy security, sustainability and environmental safety, the deputy secretary of the U.S. Department of Energy told an audience at the Sanford School of Public Policy after a daylong visit with Duke students,...
March 11, 2014
Using little more than a few perforated sheets of plastic and a staggering amount of number crunching, Duke engineers have demonstrated the world’s first three-dimensional acoustic cloak. The new device reroutes sound waves to create the impression that both the cloak and anything beneath it are...